
Int J Multiphase Flow, Vol, 3, pp. 305-318. Pergamon/Elsevier, 1977, Printed in Great Britain, 

M O T I O N  O F  M I S C I B L E  A N D  I M M I S C I B L E  F L U I D S  

I N  C L O S E D  H O R I Z O N T A L  A N D  V E R T I C A L  D U C T S  

G. C. GARDNER 
Central Electricity Research Laboratories, Leatherhead, Surrey, England 

(Received 8 June 1976) 

Abstract--A theory of large lossless waves with two fluids in horizontal closed channels of arbitrary 
cross-section is developed. The dynamic conditions for infinitesimally small disturbances is derived from this 
theory and it is shown that the dynamic condition for waves of finite magnitude is in agreement with Long's 
(1956) first order estimate for small waves in channels of rectangular cross-section. It therefore appears 
probable that an adequately accurate dynamic condition is available for such waves of all sizes. 

Results from the theory are used to quantitatively explain experimental results by Wallis & Dobson (1973) 
for the onset of slugging in horizontal channels and by Leach & Thompson (1975) for the counter-current 
discharge of fluids along a horizontal pipes between closed tanks. In both cases an influence of the ratio of the 
densities of the phases upon the usually accepted Froude number, which already contains density correction 
factors, is found. 

Transfer of miscible unstably stratified fluids through each other in vertical ducts is found to be described 
by a turbulent diffusion process which is controlled by the rate of energy dissipation and the duct diameter. 
The process is therefore quite different to that in horizontal ducts. 

1. INTRODUCTION 

Besides the presentation of various theoretical treatments, this paper is written to illustrate and 

stress the difference between closed horizontal and closed vertical channels with respect to the 

relative motion ot two fluids, where "closed" refers to the containment of a second phase rather 

than closure of the ends of the channel. The difference became apparent to the author during 

experiments carried out by J. Kubie at the Central Electricity Research Laboratories. Figure 1 

shows water advancing into brine and brine advancing into water in a 32 mm bore horizontal tube 

closed at both ends. The two fluids were initially separated by a partition which was withdrawn 

from between the spring-loaded flanges half way along the tube. It is seen that the two fluids are 

unmixed and advance in the manner characteristic of long bubbles of immiscible fluids, as 

investigated experimentally by Zukoski (1%6) and Gardner & Crow (1970). In the final state, 

Kubie's experimental tube contained two stationary layers of essentially unmixed fluids. 

When Kubie inclined the tube, he found that waves between the advancing fluid layers tended 
to promote mixing. Thus figure 2 shows that the velocity of the fluid fronts in a horizontal tube was 

approximately in agreement with Zukoski's (1%6) results for immiscible fluids but fell below 

Zukoski's prediction as the inclination increased. Figure 2 shows no results for an inclination 

greater than 60 ° since mixing became too pronounced for an advancing front to be observed. 
The conditions that obtained with a vertical tube are best illustrated, because the 

photographic reproduction is better, by results for the case of carbon tetrachloride initially lying 

on top of water, as shown in figure 3. A spherical cap of water, which advanced according to 

Zukoski's prediction, is seen but generally the system comprises drops of water and drops of 

carbon tetrachloride. Not obvious from figure 3 is that the drops were in violent motion and 

similar packets of the original fluids were observed in experiments with brine-water systems. In 
the last case, however, where there was no spherical cap, the progress of each fluid into the other 
was much slower than for the horizontal tube and the very vigorous motions were observed for a 
long time after the two fluids in a horizontal tube would have come to rest as stably stratified 
layers. Clearly different theoretical approaches have to be made in considering horizontal and 

vertical tubes. Also, although similar approaches can be used for miscible and immiscible fluids in 
a horizontal channel, different approaches are required in a vertical channel. 

The next section will develop equations for waves without energy losses in closed channels, 
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Figure 1. 5 Per cent brine and water moving through each other in 32 mm bore horizontal tube. 
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Figure 3. 

Figure 2. Kubie's results for miscible liquids compared with Zukoski's correlation. 

Figure 3. Water passing up through carbon tetrachloride in a vertical tube. 

since it has been demonstrated by Yih (1965), Zukoski (1966) and Gardner & Crow (1971) that 

lossless systems describe the kinetics of flows in horizontal situations. One result will be an 
expression for the dynamics of an infinitesimally small wave, which will be used to explain some 
results of Mercer & Thompson (1975) for the countercurrent transfer of two miscible fluids 
between closed horizontal tanks, joined by a horizontal pipe. It will be seen that the flowrate 
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depends not only on the modified Froude number 

but also on the density ratio 

[ pM ]ln 
FoH = LA--P-~J Q [1.1] 

P =(P~) [1.2] 

pL and pn are the densities of the light and heavy phases respectively, Ap is the density difference 
between the phases, g is the acceleration due to gravity, d is the diameter of the pipe and Q is the 
volumetric flux of either phase. 

The theory for the waves will also be used, with an additional hypothesis, to correlate the 
results of Wallis & Dobson (1973) for the onset of slugging in horizontal tubes. It will be seen that 
the correlation is rather better than that given by Wallis, which is presented later as [3.1], and, 
again, it implies a variation of the correlation with the density ratio. Therefore, extrapolation of 
Wallis' work at atmospheric pressure to, say, steam-water systems in high pressure boilers must 
be done with caution. 

The explanation of the phenomena in vertical tubes with immiscible fluids assumes that the 
process is essentially one of turbulent diffusion. A hypothesis is presented for a relationship 
between the diffusivity and the energy dissipated by the movement of the fluids. Some 
experiments of Leach & Thompson (1975) are used for its confirmation. 

2. LARGE WAVES IN CLOSED CHANNELS 

Long (1956) theoretically examined small waves in closed rectangular channels and found 
them to be of sech 2 profile. Here we will specifically study large waves when the mathematical 
tools required are less sophisticated but are therefore applicable to channels of arbitrary 
cross-section. Moreover we will retrieve Long's most important results and thus indicate how 
they can be extrapolated through the whole size range. 

The system is illustrated in figure 4. Stations 1 and 2 are chosen at a sufficient distance from 
the centre of the wave for velocities to be considered uniform. The depth of the lower heavy 
phase is h', its cross-sectional area is A' and it is designated, where necessary, by subscript H. 
The upper light phase is designated by subscript L, H is the total channel depth and A' is the total 
channel area. x~ and x~' are the distances of the centres of pressures of areas AI and A~ from the 
two-phase interface and y; is the distance of the centre of pressure of area A~ less area AI' below 
the interface at station 2. p is the pressure at the interface. 

Energy is conserved in each phase. Thus 

2 2 
_ p n l ) m  _ . ~ pnv2n _ . ,  

p~ ~ - T - r  p,gn, = P2 + T *  p~gn2 , 

I ) , ~ ; , D  2 1},1)7~,l) 2 

Pl z ;  

[2.1] 

[2.2] 

Station I Station 2 

//~////////////////L/// 
/ 

I i ~ h'  2 -1~ ~ H  

<//  AI\ 

Figure 4. Definition sketch for large wave theory. 
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The dynamic force balance over the whole channel cross-section is 

2 I 2 I 
pnv~nAi  + pL V,L(A -- A . . . . .  ~ ' ~ x '  l ) + p i A  + p u g A i x m  p L g ( A ' - - , ~ t j  tL 

V 2 A '  2 "A' 2j 2L. = pH 2n 2 + p2V2Lt -- A; )  + p2A'  + pngA~x~r~ - pLg(A'--  A'~x  ' 

Continuity relationships are 

[2.3] 

A~vlrl = A ~ v 2 , ,  [2.4] 

( A ' -  A[)VlL = ( A ' -  A~)V2L . [2.5] 

Also the following relationships concerning the centres of pressure can be derived by 

elementary means. 
t t __  ! I I t t I A 2'x'2H - A ix iH - (A2 - A l)yo + (h2 - h l)A1, [2.6] 

A '  A . . . .  A '  ' ' /A '  A ' x ' '  Ch' h ' ~ A  ' A '~ - 2)X2L--~. - -AI)XlL=~ 2-- 1Jyo--~ 2-- U~ -- U. [2.7] 

We eliminate ( P 2 - p , )  between [2.1] and [2.3] and employ [2.4] and [2.7] to achieve 

A1 A,A ] F~n A:~ (l -~)2 yo- A,/A~_--TZ-~, j 0 [2.8] 

and similarly we obtain from [2.2] and [2.3] 

FI,,rA,+A22 3 _2rl-A,1  rh2-h ,  1 a,a2j + r , L [ l  _--2-~J + y o -  (1 - a,)[a~_---Z~,J = 0 I2.9] ~77L 2 
where 

F ~ ,  = prrv~H Fl~ = DLv21L 
A p g n '  "ARgH ' [2.10] 

h~ h2 h; y~ h, = ~ ,  = ~ ,  y o = ~ ,  [2.11] 

A~ A~ 
At = A--;' A2 = A--; [2.12] 

where Ap = (RH - pL). 

We finally derive from [2.8] and [2.9] 

F~H 2 
322 - (A2 - A l) 2 [(1 - A 1)(h2 - hi) - (2 - A i - A2)yo], [2.13] 

FI2L 2 
(1 -A2) 2 = ( A 2 -  A1) 2 [(A~ + A 2 ) y o - A l ( h 2 -  h0]. [2.14] 

2.1 D y n a m i c  relat ionships  f o r  a smal l  d i s turbance  

The following approximations can be written for the case of a very small disturbance 

h 2  - -  h i  
yo - 2 ' [2.15] 

A1 = A2, [2.16] 
when an area by itself is involved 

when a difference in areas is involved 

n w  ~ 
A 2 -  Ai = - ~  (h2 -  h 0 ,  [2.17] 
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where w' is the width of the interface. Thus [2.13] and [2.14] become 

(A) 
~ =  ( l _ A 0 2 -  ~ [2.181 

from which 

[ A ' ]  "~ 
IF'ul + IFtLI = LH~w'J " [2.19] 

Equations [2.18] and [2.19] are dynamic relationships but they can be reduced to a more 
recognisable form by re-employing the equations of [2.18] in12.17] to yield 

pl"ll)21nW' "~ pLV21LW' - -  1 [2.20] 
hpgA~ hpg(A' - A~) 

where it is noted that the subscript defining station 1 is only retained to differentiate between A' 
and A',. 

Equation [2.20] for A'= ~ reduces to the accepted form of 

pnv~uw'_ 1 [2.21] 
hpgA 

for open channel flow. 
For a rectangular channel the dynamic condition of [2.20] reduces to 

p~vL., . 9Lv~,- 
Apgh~ • hpg(H - h ~) = 1 [2.22] 

which, rearranged, is the zero order approximation found by Long (1956) from the theory of small 
waves. 

2.2 Properties of large waves illustrated by reference to a rectangular channel 
Equations [2.13] and [2.14] reduce to very simple forms for rectangular channels. 

Ft2, F~L 
= (1 -- h2) 2 = 1 [2.23] 

F~, NL 
h, 2 = ~ =  1. [2.24] 

and also, of course, 

Thus the modulus of the modified Froude number for a phase at one station is equal to the 
reduced depth of that phase at the other station. 

Other important properties of the wave can be derived in the following fashion. Define 

From [2.23] 

[ '] 1/2 
F~ = / PL / lYE-- Vn). 

L ApgH J " 

[2.25] 

L A a g H j  , , .  [2.26] 



310 G.C. GARDNER 

We can derive directly from [2.23] or from [2.19] 

I F , - I  + IF,Ll = I .  [2.27] 

Let us assume the coordinate direction such as to make u,L positive. Then [2.27] becomes 

r 
pL 1112 1/2 d- 1/2 

- - Pu  I v , . l = l  [ApgHJ (VIL+ V , , ) +  (ApgH)l~2 [2.28] 

where the upper sign of a choice is accepted if v , ,  is positive. Eliminate Iv,u] between [2.26] and 
[2.28] 

Similarly 

1 -- FIA h2- (pL')"2" [2.29] 
1 ----- \~--~, / 

1 - F2a  

1 + \p--.-H / 

Equations [2.29] and [2.30] can be used to draw the diagram of figure 5, in which the examples 
are for cases with Vm being of opposite sign to V,L, since this is the most common case. h at one 
station is a linear function of Fa at the other station, with h = 0 corresponding to Fa = I and h = 1 
corresponding to Fa = • (pJpL) ''2. Thus, with the signs of the two velocities being opposite, it is 
seen that the range of Fa, for which these waves can be discussed, becomes more restricted as 
the density of the light phase approaches that of the heavy phase. 

It is easily seen from figure 5 how the height of the wave can be estimated if two of the 
parameters h,, h,, F,A and F:a are known. Smaller waves are possible but it is suggested that the 
largest possible lossless waves are described, since the wave of figure 4 can be joined far 
downstream by another wave which is the mirror image of the first. The whole wave thus formed, 
will have a flat top, which can be considered to be the result of increasing the height of Long's 
sech ~ profile waves until interference with the top of the channel is achieved. 

A last point must be made that the physics of the waves which touch or almost touch the top 
of the channel, so that h2 = 1 is doubtful. Reference to [2.23] and [2.24] shows that v,L, as reason 

101--%, ~ 180 bor  i s o - o m y l o l c o h o l /  

\ , ,  

h 06'--- '- ~ 

0.4 . . . .  h 2 N 

0.2 . . . .  h i 4 - - - -  

I I II P 
0 0 2  0 4  0 6  0 8  I0  

Figure 5. The h -  Fa diagram. 
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dictates, becomes zero when h2 = 1 but v2L is non-zero. Mathematically this is consistent but 
physically it is implausible. 

2.3 Comparison of the results of the analysis with those of Long (1956) 
We take the result of [2.27] for a closed rectangular channel and substitute from [2.23] to 

obtain 

F~n F~L 
h2 F 1---2-~2 = 1. [2.31] 

This is the dynamic condition for a large wave and has been derived in the same way as [2.22] 
for a small disturbance. Equation [2.31] can be rearranged to yield 

F'2" 1+ + F,L h z - h , ]  ' 
h, ~ Z ~  1 -  l - h , J  =1 .  [2.321 

Equation [2.32] can be compared with the first order approximation of Long's (1956) analysis, 
the zero order approximation having already been given as [2.22]. The approximation is 

h, h, J + (1 --i-~,) 1 --i-z-~, J =1 [2.33] 

which agrees with [2.32] within the accuracy of the approximations made. Long continued to 
evaluate a complicated second order approximation to his theory but, it is to be suspected that 
[2.31] is sufficiently accurate for most purposes over the whole range of wave heights. 

3. O N S E T  O F  S L U G G I N G S  

Wallis & Dobson (1973) reviewed existing experimental work and carried out further detailed 
experiments in a closed rectangular channel to determine the onset of slugging. This is defined as 
follows. In all experiments air was blown over water which was essentially stationary and, if the 
air velocity was increased, a critical, well-defined value was found at which the large waves lifted 
to the top of the channel and were blown along with the air. Wallis correlated the critical value by 

F,ac =0 .5( I -h , )  ''2 [3.11 

but he derived this correlation by reasoning which took no account of the flow of the heavy phase 
in the channel below the level h,. Here a hypothesis will be presented which correlates the 
air-water results equally well or even better than [3.1] and which implies that [3.1] may fail when 
applied to systems in which the densities of the phases approach each other. The steam-water 
system at 180 bar is of particular interest to the author and then pL/pH = 0.25. 

Consider a wave of the form shown in figure 4 but with co-ordinates chosen such that vm is 
stationary and the wave is therefore moving to the right. Estimate the total energy flux difference, 
Ae, between station 2 and station 1. The algebra involved is considerable and will not be given but 
the result is 

AE=F~a[l-Fla][1-(l-PL~U2h~-F,a][( ~) )F,A-21, 
2Ae(p, '12 - pL'/2) 3 

AE = H(pLpH )l12(Apg H)3~,. 

[3.21 

[3.31 

Values of AE are plotted in figure 6 for (pn/pL) '/2 = 29. Each curve is for a fixed value of h, but 



312 G.C. GARDNER 

0 9  

O8  

0 5  0 2 5  

o 5  

0 2  

i , 0 2  0 4  0 6  0 8  
F i ' .  

Figure 6. Energy flux for air water system. 
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Figure 7. Prediction for onset of slugging. 

Fla is varied. It is seen that AE passes through a pronounced maximum and the hypothesis is that 
conditions such that AE increases as Fla, or the light phase flowrate, increases are possible but 
that conditions in which AE decreases with F,~ are improbable. Therefore the maxima of the 
curves indicate the critical value of F,a where slugging begins in order to maintain the increase of 
AE with air flowrate. All this, of course, supposes that the largest possible lossless waves obtain, 
which may not be true when F,~ is small but which is not improbable as F,a, is approached. The 
result is shown in figure 7, using the same coordinates as chosen by Wallis & Dobson, and the 
variation of F,~c with the density ratio is clear. Figure 8 shows the experimental results obtained 
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Figure 8. Comparison of energy flux prediction with experiment. (a) Data of Wallis with a paddle and wave 
suppression at end of channel. (b) Data of Wallis without paddle or wave suppression. (c) Data of Kordyban 

& Ranov. 

by Wallis with various apparatus as well as results due to Kordyban & Ranov (1970). The 
agreement with prediction is excellent and is within the scatter of the experimental results. 

4. DISCHARGE ALONG A HORIZONTAL DUCT BETWEEN CLOSED VESSELS 

Figure 9 illustrates the system studied experimentally by Leach & Thompson (1975), starting 
with brine in one tank and water in the other. They correlated their results by 

Fort = 0.09 [4.1] 

where For~ is defined by [1.1]. 
The present author's assumptions concerning the interface between the two fluids is given in 

L igh t  f lu idtan~ S t a t i o n  
I 

Station 3 

Stat ion 
2 

Heavy f luid t ank  

Figure 9. Definition sketch for Leach & Thompson (1975) experiment. 
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figure 9. Station 2 is chosen at any point in the centre region of the transfer pipe where the level 
may be assumed uniform. Stations 1 and 3 are at the discharge positions of the heavy and light 
phases, where the flow is assumed to reach the critical dynamic condition for a small disturbance. 
This assumption is in agreement with concepts for the flow over a broad-crested weir and was 
found by Gardner & Crow (1971) to apply to a similar discharge, when the light phase was 
assumed stationary. 

The complete conditions at stations I and 3, especially with respect to the inflow of one of the 
fluids, are complex and the exact nature of the flow must remain a matter for speculation. For 
simplicity we will assume that the light phase is stationary at station 1, so that the condition of 
[2.21] can be applied. We must therefore expect to apply a correction factor or discharge 
coefficient to the result but the chief test of the appropriateness of the theoretical approach will 
be the prediction of the correct trend of Fort with respect to the density ratio. 

We employ the same notation as used in section 2, except that p, and p2 are both taken at the 
level of the interface between the two fluids at station 2. We assume that 

p, - p2 = pLV~L [4.21 

which can be considered as rather over-estimating the influence of the vena contracta, as the light 
phase enters the duct, but variations of this assumption are found to have small influence upon 
the result. The dynamic force balance over the area A; is 

2 t i - t t t t t t t t . - p2)A2 + p n v , . A ,  + pngA ,x ,  + pLg(A2 -- A,)yo + peg (h z - h ,)A, pnv2HA2 pngA2x2=(p ,  , 2 , , , 

[4.31 

We employ [2.6], the critical condition of [2.21] and [4.2] to achieve 

and 

where 

A 2  2 7rA'2 [1 A' (1 - PL (1 _---Z--~2) ) ] 
A 2 x 2 -  A , x ,  =-4-"~ - -~2  pn [4.4] 

['s'~ m A 312 
Fort = ~-]  ~ [4.5] 

X t W t 

x = ~ ,  w = ~ .  [4.6] 

Similar equations are written for the light phase discharge but it is noted that 

={pL'~"2(W_'~3'2(1--A3) 3'z 
F o .  \ p . ]  \41 w3 m [4.7] 

Equations [4.4], [4.5] and [4.7] have been solved simultaneously by trial and error with the 
result given in figure 10a. The prediction near (prO,) = 0 must be regarded with caution, since the 
discharge area for the light phase then becomes a small fraction of the total area and 
compressible flow effects may be important. Figure 10b compares the theoretical prediction with 
the data of Leach & Thompson (1975) and a line with FQr~ equal to 0.79 times its theoretical value 
is drawn through the mass median of the experimental points. The discharge coefficient of 0.79 is 
of reasonable magnitude but it is also noted that the trend of the results with the density ratio is 
correctly predicted. 

It is of interest to note that the theory for a horizontal duct, with a stationary upper phase and 
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Figure 10. Prediction and experimental results for countercurrent discharge of miscible fluids along a 
horizontal pipe between tanks. 

with the heavy phase progressively introduced and accelerated from an upstream position, where 
the flow is zero, to a downstream discharge position, reduces to precisely the same equations as 
given above for the particular case of a density ratio of unity. The theory does not then involve 
the same awkward assumptions with respect to the light phase. In the present example the duct 
runs half full at station 2 when (pL/pH) = 1 but the theory for the other problem is applicable for 
any depth at the upstream point as well as to any density ratio. Beij (1934) examined a roof gutter 
running half full at the upstream point of zero flow and found For~ = 0.093, which compares with 
the extrapolation of Leach and Thompson's results to (pdpr~)= 1 of 0.086. Gardner & Crow 
(1971) examined the roof gutter type of problem for lower upstream levels and found closer 
agreement between theory and experiment than Beij. 

In conclusion it can be stated that this section and the last have given additional evidence for 
the application of simple momentum flux equations to problems in horizontal flow but, equally 
important, the influence of the density ratio (pL/pH) on the values of modified Froude numbers, 
such as that of [1.1], has been demonstrated. 

5. THEORY FOR THE DIFFUSION OF UNSTABLY STRATIFIED 
FLUIDS IN VERTICAL DUCTS 

It has been postulated in the introduction that unstably stratified fluids move through each 
other in a fashion that can be described by the diffusion equations. Now the transfer of light fluid 
upwards and heavy fluid downwards implies the dissipation of energy and therefore the 
hypothesis is put forward that the dittusivity, D, is dependent only upon the dissipation of energy 
per unit mass of fluid, ~, and the diameter, d, of the duct. In consequence 

D = K~"3d 4'3 [5.1] 
where K is constant. 
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This same assumption was also made recently by Baird & Rice (1975) to correlate the 
experimental results from seven different sources for the axial diffusion of material in a bubble 
column. In that case ~ = ~B is given by 

ca = ug [5.2] 

where u is the superficial gas velocity and g is the acceleration due to gravity. It was found that 
K = KB = 0.35. 

In the present case we derive an expression for the energy dissipation rate as follows. Assume 
that there are two distinguishable fluids with densities pH and pL and volumetric concentrations 
cH and cL. Assume also that volume is conserved upon mixing. If the vertical coordinate is y 
upwards, then we have the flux of the light fluid -D(OcL[Oy) which is given potential energy 
-D(OcJOy)p~gdy in rising dy. Remembering that (0c,/0y)= -(ac~/0y), we therefore find that 
energy dissipation per unit mass is 

and 

ApDg 3c.____H_ ApDg 3c~ 
E (CMpH + CLpL) ay p, ay [5.3] 

2p, = p. + pL. [5.4] 

Thus from [5.1] and [5.3] 

D : K3/2~Ap--'~ 112 OCH d2 
t p a /  Oy " 

[5.5] 

5.1 Evaluation of K in [5.5] 
Mercer & Thompson (1975) carried out experiments in which a closed vessel containing brine 

was connected through a tube in its base with a tank of water. They measured the flux of water, 
Q, into the tank. Therefore 

and 

D OCL_ 4Q 
- ~ -  ~-~ [5.61 

dCL 1 
dy L [5.7] 

where L is the length of the tube. 
Substituting from [5.5] and [5.7] into [5.6] we obtain 

where 

<) K = -~ Fo -~ [5.81 

pa ] 112 
Fo = [A--~J Q' [5.9] 

Though it is noted that, if an average density had not been assumed, an influence of the 
density ratio would have been found. However, the available experimental information does not 
warrent an examination of the influence of the density ratio on FQ. 

Mercer & Thompson's (1975) data are plotted in figure 11 in the manner suggested by [5.8] and 
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Figure l 1. Ingress of light fluid up a vertical pipe into a tank of heavy phase. Results plotted according to 
[5.8]. 

it is seen that a straight line is in excellent agreement with the results, though it suggests an end 
effect equivalent to an Lld of about 1.7. The results substantiate that the process can be 
represented as one of diffusion and [5.5] gives the diffusion coefficient with K = 0.68 or 
K 3/2 = 0.56. 

5.2 Predicted diffusion process in Kubie's experiment 
As described in the Introduction, Kubie conducted an ideal unsteady state experiment by 

suddenly connecting two unstably stratified fluids in a vertical pipe. It is instructive to predict the 
properties of the concentration wave in his experiment, since a simple analytical result is 
obtained equivalent to that for two masses containing different concentrations of diffusible 
matter which are suddenly brought together. 

The diffusion equations is 

 (o cq 
\ Oy / = Oc__.__~L 

0y at 
[5.10] 

where t is time. Substituting for D and noting that it is in terms of (Oc,/Oy), 

dZc, ( d c , )  1/2 
d~-~=4Y ~ [5.11] 

where 

Y = y[15K3'z(Apg]"ZdZt] \--~-,/ " 

The solution to [5.11] with the boundary conditions 

[5.12] 
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is 

which is valid in the range 

Y = O, cH = 0.5, 

Y = Yo, c ,  = 1, 

Y = Yo, dcu = O. 
dY 

15 o.,  2 
\ ~ /  + 0.2 ys 

[5.13] 

[5.14] 

(15~°"<~ y <~ (15~ °'~ 
- \ 1 6 ]  \ T 6 /  " [5 .15]  

Thus, in this case where the diffusivity varies with the concentration gradient, the extent of 
the concentration wave is finite. 
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